Babel/SIDL
Design by Contract: Status

Tammy Dahigren
with
Tom Epperly and Gary Kumfert
Center for Applied Scientific Computing

Common Component Architecture Working Group
April 10, 2003
; This work was performed under the auspices of the U.S. Department of Energy by the University
Q\ISC/ of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48. -|LL
il '

UCRL-PRES-152674 o

Overview

e Basic Constructs

e Impact on Babel/SIDL
e Status of Phase |

e Benefits

e Future Work

CASC

The SIDL grammar supports optional
assertion and sequencing specifications.

e Packages & Versions

o Interfaces & Classes € 0, ional
e Inheritance Model specifications

e Methods added here
e Method Modifiers

e Intrinsic Data Types

e Parameter Modes

e And more...

CASC TLD 3

Three classic assertion mechanisms
supported in the interface descriptions.

Type Specify...

Invariant e unchanging properties of instances of a class
e must be true upon instance creation and
preserved by all routines before and after every
invocation

Precondition |e when itis valid to invoke a method
e must be true prior fo invocation

Postcondition | e effects of a method and results it will return
e must be true after invocation

Plus method call invocation sequencing!

CASC TLD 4

Method call sequencing enforcement is
provided by Babel using object states.

Default initial state. Explicit final state.

=7
interface Vector {

states { uninitialized, initialized[final] };

void setData (in double data)
require in uninitialized;

ensure now _ready : in initialized;

~

Transition to initialized is automatic if
library call is successful and all (other)
postconditions and invariants met.

Optional assertion label.

Vector.sidl

CASC D5

Pre- and post-conditions are typically
used to constrain arguments and results.

Default initial state. Explicit final state.

interface Vector {
states { uninitialized, initialized[final] };

Vector axpy (in Vector a, in Vector x)
require in initialized; a !'= NULL; x != NULL;
ensure result not null : result !'= NULL;

double norm ()
require object is initialized : in 1initialized;

ensure result >= 0.0; is pm\re;

An exception is raised if
either preconditions or
1 postconditions unmet.

Attributes of instance will not be changed.

Vector.sidl

Note: Argument a is vector instead of scalar for illustration purposes only.

CASC TLD 6

A number of additions to the original
SIDL grammar were made.

e Clauses states, invariant, require, require else,
ensure, ensure then

Added for

e Conditional expressions inheritance.
—Logical implies, or, xor, and
— Relational ==, I=; <, <=, >=, >
— Shift <<, >>
— Additive +, -
— Multiplicative *, [, mod, rem
—Unary +,-,~, not, in, is
— Postfix method call
—Logical grouping ()
e Terminals boolean, double, float, integer!, long’,

character, string, identifier

e Literal keywords true, false, null, result, pure

CASC 1Decimal, Hexadecimal, and Octal. TLD 7

Optional object states and invariants
added to classes and interfaces.

Class ::= [abstract] class name
[extends scoped-class-name]

[implements-all scoped-interface-name-list]
{ [ObjectStates] [Invariants]

class-methods-1list

} []

Interface ::=
interface name
[extends scoped-interface-name-list]
{ [ObjectStates] [Invariants]
methods-1list

} []

CASC TLD 8

Object states definition is used to specify
list of valid states.

ObjectStates ::= states {
state-1 [initial | final]
[, state-2 [initial | final]]
[, state-n [initial | final]]
} []
Default initial state Default final state is
is first item in list. last item in list.

]

states { uninitialized, initialized[final] };

Explicit final state.

CASC TLD 9

Invariant definition is used to specify
unchanging properties of objects.

Invariants ::= invariant AssertionlList;

Assertionlist ::= [label-1 :] AssertionExpression-1;
[[label-2 :] AssertionExpression-2;]

[[label-n :] AssertionExpression-n;]

An “is pure” method must be specified
elsewhere in this interface.

l

invariant {non-negative : entriesAreNonNegative()};

?

Optional assertion label
for debugging messages.

CAS C TLD 10

Method definitions allow specification of
pre- and post-conditions.

ClassMethod ::= [(abstract | final | static)]
Method
Method ::= (void | [copy] Type) name [extension]

([ArgumentList])

[local | oneway]

[throws ScopedExceptionList]
[Requires] [Ensures] ;

Requires ::= require [else] AssertionList ;

Ensures ::= ensure [then] AssertionList ;

CASC TLD 11

The modifications had a significant
impact on the grammar and symbol table.

Area Impact
SIDL e Added
Grammar —42 terminal symbols/lexical tokens (1 91%)

—21 productions (1 140%)
e Modified 3 productions

Symbol Table | ¢ Added 17 classes (1 77%)
e Modified 4 classes

XML DTD e Added 5 elements (1 22%)
e Modified 3 elements

CAS C TLD 12

Expanded glue code generated from
enhanced interface descriptions.

In SIDL or XML. Application |

~~
Stubs ‘

interface
description

Enforcement
code added here. Al

CAS C TLD 13

The generated checks added to the IOR
files.

Vector.sidl — .

VectorApp.c Vector Impl.c

i

Vector.h Vector IOR.h

i (] [

Vector Stub.c Vector IOR.c Vector Skel.c

CAS C TLD 14

Five basic execution paths available
through the IOR.

Library
method

B Preconditions 3o

4
Invariants;

L] 4

Postconditions #HH

Invariants;
Postconditions JH

|....
.l......

Preconditions

Invariants g5

*Method call sequencing enforcement cannot be supported.

CAS C TLD 15

Invariants

There are still several features that need
to be completed/addressed.
e DTD/XML support
e Assertion enforcement options
—Dynamic switching basis
—Class, object, method, etc.
— Assertion type combinations
—Preconditions only, pre & post, invariants, etc.
— Assertion expression evaluation levels
—State checks only, cheap only, etc.
e Generated code

CAS C TLD 16

Benefits of including these contracts in
Babel/SIDL include...

e Better designs and documentation
—Behavior and call ordering more explicit

e Improved debugging and reliability

— Runtime checking of consistency between
specifications and code

— Runtime checking of client call ordering
e Better support for reuse

e Supported regardless of native support in the
underlying implementation language

CAS C TLD 17

Future work focuses on adding and/or
exploring additional features such as...

e Terminals

—float and double complex

—non-primitive SIDL types (e.g., arrays)
e Operation: power xMy
e Literal keyword.: old

— Pre-method state?

— Guarded postconditions associated with superclasses
(old precondition) implies original_postcondition

e Assertion exception policies
e Domain-specific features — to be determined

CAS C TLD 18

An assessment of your level of interest
and anticipated usefulness is needed.

e Is this capability of interest to you? Why or why
not?

e Do you anticipate adopting this at some point?
If so, within what context?

Thank Youl!

CAS C TLD 19

